CATEGORY THEORY CATEGORY II - EQUISETS

PAUL L. BAILEY

1. Equisets

Definition 1 (Objects). An equiset (E, \sim) consists of a set E together with a relation \sim on E with the following properties:

(E1) $a \sim a$	(Reflexivity)
(E2) $a \sim b$ implies $b \sim a$	(Symmetry)
(E3) $a \leq b$ and $b \leq c$ implies $a \leq c$	(Transitivity)
The relation \sim is called an <i>equivalence rela</i>	tion on E .

Definition 2 (Subobjects). Let (E, \sim) be an equiset. If $F \subset E$, the restriction of \sim to F satisfies the properties of an equivalence relation on F, making (F, \sim) an equiset. We may call (F, \sim) , or just F, a *subequiset*.

Definition 3 (Morphisms). Let (E, \sim) and (F, \approx) be equisets. A function $f : E \to F$ is called *equivalence preserving* if

$$e_1 \sim e_2 \quad \Rightarrow \quad f(e_1) \approx f(e_2).$$

The identity map on P is equivalence preserving, and the composition of equivalence preserving functions is equivalence preserving. Thus, equisets with equivalence preserving maps form a category.

Problem 1. Discuss when a function $f : (\mathbb{Z}, \equiv_n) \to (\mathbb{Z}, \equiv_m)$ is equivalence preserving, where

$$a \equiv_n b \quad \Leftrightarrow \quad n \mid b - a.$$

DEPARTMENT OF MATHEMATICS, BASIS SCOTTSDALE *Email address*: pbailey@basised.com

Date: Wednesday, February 7, 2018.